Inactivation of Endothelial Small/Intermediate Conductance of Calcium-Activated Potassium Channels Contributes to Coronary Arteriolar Dysfunction in Diabetic Patients
نویسندگان
چکیده
BACKGROUND Diabetes is associated with coronary arteriolar endothelial dysfunction. We investigated the role of the small/intermediate (SK(Ca)/IK(Ca)) conductance of calcium-activated potassium channels in diabetes-related endothelial dysfunction. METHODS AND RESULTS Coronary arterioles (80 to 150 μm in diameter) were dissected from discarded right atrial tissues of diabetic (glycosylated hemoglobin = 9.6±0.25) and nondiabetic patients (glycosylated hemoglobin 5.4±0.12) during coronary artery bypass graft surgery (n=8/group). In-vitro relaxation response of precontracted arterioles was examined in the presence of the selective SK(Ca)/IK(Ca) activator NS309 and other vasodilatory agents. The channel density and membrane potential of diabetic and nondiabetic endothelial cells was measured by using the whole cell patch-clamp technique. The protein expression and distribution of the SK(Ca)/IK(Ca) in the human myocardium and coronary arterioles was examined by Western blotting and immunohistochemistry. Our results indicate that diabetes significantly reduced the coronary arteriolar response to the SK(Ca)/IK(Ca) activator NS309 compared to the respective responses of nondiabetic vessels (P<0.05 versus nondiabetes). The relaxation response of diabetic arterioles to NS309 was prevented by denudation of endothelium (P=0.001 versus endothelium-intact). Diabetes significantly decreased endothelial SK(Ca)/IK(Ca) currents and hyperpolarization induced by the SK(Ca)/IK(Ca) activator NS309 as compared with that of nondiabetics. There were no significant differences in the expression and distribution of SK(Ca)/IK(Ca) proteins in the coronary microvessels. CONCLUSIONS Diabetes is associated with inactivation of endothelial SK(Ca)/IK(Ca) channels, which may contribute to endothelial dysfunction in diabetic patients.
منابع مشابه
P13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملEndothelium as target for large-conductance calcium-activated potassium channel openers.
The endothelium is a highly active organ responsible for vasculatory tone and structure, angiogenesis, as well as hemodynamic, humoral, and inflammatory responses. The endothelium is constantly exposed to blood flow, sheer stress and tension. Endothelial cells are present as a vasculature in every tissue of the body and react to and control its microenvironment. A variety of ion channels are pr...
متن کاملEndothelium - Derived Hyperpolarizing Factor Where Are We Now ? Michel Félétou , Paul
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses inv...
متن کاملEndothelium - Derived Hyperpolarizing Factor Where Are We Now ? Michel
The endothelium controls vascular tone not only by releasing nitric oxide (NO) and prostacyclin but also by other pathways causing hyperpolarization of the underlying smooth muscle cells. This characteristic was at the origin of the denomination endothelium-derived hyperpolarizing factor (EDHF). We know now that this acronym includes different mechanisms. In general, EDHF-mediated responses inv...
متن کاملCalcium-activated potassium channels contribute to human coronary microvascular dysfunction after cardioplegic arrest.
BACKGROUND Cardioplegic arrest (CP) followed by reperfusion after cardiopulmonary bypass induces coronary microvascular dysfunction. We investigated the role of calcium-activated potassium (K(Ca)) channels in this dysfunction in the human coronary microvasculature. METHODS AND RESULTS Human atrial tissue was harvested before CP from a nonischemic segment and after CP from an atrial segment ex...
متن کامل